
The UNIX Shell As a Fourth Generation Language

Evan Schaffer and Mike Wolf
Revolutionary Software, Inc.

131 Rathburn Way, Santa Cruz CA 95062, USA

evan@rsw.com — wolf@hyperion.com

ABSTRACT

There are many database systems available for UNIX. But almost all are software prisons that you must get into and leave the power
of UNIX behind. Most were developed on operating systems other than UNIX. Consequently their developers had very few software
features to build upon, and wrote the functionality they needed directly, without regard for the features provided by the operating sys-
tem. The resulting database systems are large, complex programs which degrade total system performance, especially when they are
run in a multi-user environment.

UNIX provides hundreds of programs that can be piped together to easily perform almost any function imaginable. Nothing comes
close to providing the functions that come standard with UNIX. Programs and philosophies carried over from other systems put walls
between the user and UNIX, and the power of UNIX is thrown away.

The shell, extended with a few relational operators, is the fourth generation language most appropriate to the UNIX environment.

1. Fourth Generation Systems

In recent years, a variety of developments in programming
language design have emerged. Object-oriented languages are
becoming common, and languages explicitly supporting multi-
ple tasks and inter-task communication are also gaining popu-
larity. Unfortunately, these efforts have resulted in produc-
tivity increases too small to offset the growth in the size and
complexity of software systems. A response to this has been
the development of fourth generation programming languages.
Although not commonly thought of as such, the UNIX shell is
one of the most powerful and flexible fourth generation
languages available.

1.1 Attempts at a Definition

There is no consensus on the definition of what constitutes
a third or fourth generation language. Mainstream third gen-
eration languages are typed, procedural languages. They are
standardized and largely hardware independent. Operations in
the language must be specified in a detailed, step-by-step algo-
rithmic fashion. Third generation languages do very little
implicit processing. Third generation languages are general
purpose, even most of those which were ostensibly designed as
special purpose languages.

Fourth generation languages are usually intended as design
tools for a particular application domains. They are usually
free form in their use of variables, often not requiring type
definitions and allowing dynamic typing of variables. They
don’t emphasize a modular, procedure-based coding style.
Instead, they contain a number of predefined procedures for
performing various high-level operations. The high-level

operations involve large amounts of implied processing. For
example, a "sort" operator is usually available. The facilities
of a fourth generation language are usually both more power-
ful and less flexible than the facilities available in a third gen-
eration language.

A fourth generation programming language (4GL) should
make possible the simple statement of what you want, rather
than a detailed procedure of how to produce it. Although there
are many products calling themselves 4GL today, they are
mostly rewrites of COBOL and report writers. They are too
low level and tedious. This is definitely not what a 4GL
should be.

1.2 Previous Generations

The first generation of computer languages was the
sequence of zeroes and ones that were the machine instruc-
tions. In the beginning people had to code in this way.

The second generation was "assembly language", which has a
one-to-one correspondence with machine instructions.
Humans could write names words to be converted into
machine language. For example this assembler code adds
register 1 to register 2.

Figure 1. Second Generation Program

add r1,r2

One line of code produced one computer instruction. Then, in
about 1956, FORTRAN was written to do formula translation,
and it became much easier to write programs. Each line of

The UNIX Shell As a Fourth Generation Language Page 2

code produced several computer instructions. The third gen-
eration has come to encompass sophisticated macro assembly
languages, and other so called "high level" languages like C,
COBOL, Pascal, LISP, PL/I and many others. There are
advanced constructs close to English like "if", "then", and
"else", but the types of statements are constrained to mostly
arithmetical operations, with limited string capabilities. A typ-
ical third generation program is:

Figure 2. Third Generation Program

for i=1 to 10
print i, sqrt(i)

next i

The next step comes in describing what you want and letting
the computer figure how to give it to you. The fourth genera-
tion has English-like words, but statements typically deal with
more than numbers, and are "non-procedural". A program to
sort all the lines in a file, for example, is reduced to "sort file"
in a fourth generation environment. Fourth generation
language primitives often include relational operators, while
third generation languages generally do not. And, when you
need to mix procedural with non-procedural instructions, that
is easy to do.

Figure 3. Fourth Generation Program

for file in file1 file2 file3
do

sort $file
done

At the UNIX shell level you can, in many cases, say what you
want without saying how (non-procedural), and you will get it:

$ sort file

and you get a sorted file.

$ spell file

and you get a list of words in your file that are not in the dic-
tionary. One line of commands produces calls to one or more
programs, each of which may have thousands of instructions.

With the shell you can put together application in minutes or
hours, instead of the weeks or months required with 3GL code.
In a 4GL you should be able to write most applications in a
line or two. With the shell you can say things like:

$ cut some columns < file |
grep ’string’ |
sort |
lpr

This short program gets some of the columns in a file, pipes
them through grep to get just the lines with a certain string,

sorts them and sends them to a line printer.

This same report would take tens to hundreds of lines in
COBOL, PL/I, C, and most commercial 4GLs. In those
languages you write instructions one at a time, to process
records from the file one at a time. This is very tedious com-
pared to writing one instruction to operate on the entire file.

1.3 Data Structures in the Data

In an ideal environment, the structure of data is in the data.
Newline separators for records, and column separators for
fields can tell any program where the fields and records are.
3GL languages have the data structure hard coded into them,
so that one program reads only one kind of file.

In a traditional third generation environment, the structure of
the file must be hard coded into the program. In a fourth gen-
eration environment files have their structure embedded with
newline and tab record and field separators. Any program can
find a record by just looking at the stream of characters. Add a
single character to the data file read by a COBOL program and
all will be changed or lost, so you have to do file conversions
in the COBOL environment all of the time. And these are
done in COBOL. Any changes require editing and recompiling
all of the programs that read that file.

In addition, there are no file operators in 3GLs, only field at a
time instructions. Therefore you have to write loops to process
each record. This takes a lot more code than just processing a
whole file at a time.

Most commercial 4GLs are very similar to COBOL. You still
have to do record at a time processing. If the COBOL pro-
gram takes 100 lines, the 4GL will take anywhere from 50 to
100 lines, to do what we did above in one pipeline.

1.4 A Revolution in Computing

If you write C programs on UNIX, you miss most of the
advantages of shell level programming. It’s been suggested
that since C and other languages on UNIX, give you the sys-
tem command this converts them into 4GLs. This means that
assembler is a 4GL if it has a "system" command. But on
non-UNIX operating systems like DOS and VMS there is not
as rich a variety of tools available as in UNIX, except to the
extent that UNIX has influenced these systems.

The UNIX system itself offers an integral tree index approach
to data organization: the hierarchical file system itself. Many
utilities traverse these trees, search them, add and delete nodes,
and in general provide procedural tools with which to deal
with files. The same is true of DOS and Macintosh systems.
The opportunity is afforded to avoid re-inventing the wheel.

This really is a revolution in computing. Working with great
tools will spoil you, but most of the computing world is still
writing COBOL. To have to go back and forth between such
environments is painful.

The UNIX Shell As a Fourth Generation Language Page 3

A good 4GL should be written in C ... once. It should be writ-
ten so general purpose and easy to use that its functionality can
be used from then on, rather than recode in each application.
Then these good programs can be used to put together applica-
tions, not coding each entire application in C, unless there is
some critical need.

As users become more familiar with their environment they
are more able to use the power of these advanced systems, if
only to shorten repetitive command sequences, another key
feature of 4GLs. In every computing environment there are
facilities to collapse a sequence of keystrokes like aliasing,
scripting, and macro construction.

Marketing people got wind of 4GL and turned it into a big
marketing hype. Most database management systems wrote
their own procedural language like COBOL or RPG and
called it a 4GL. They are usually worse than COBOL, because
you have to learn their new language, rather than use a classic.
Few 4GL designers put as much time and energy into design-
ing their language as was put into COBOL.

The driving force behind fourth generation languages comes
from several needs. Programming projects commonly involve
man years of work. The shortage of experienced software
engineers and the need to increase productivity pushes us
towards tools allowing faster development cycles. The
increased use of computers by users who do not have formal
computer science education requires very high-level tools
which let novice programmers concentrate on algorithms
rather then implementation details. As more work is done on
computers, there is more demand for single use programs to
perform a specific task. The relatively high expense of coding
a software tool with a one time use encourages the use of any
method available for simplifying the development process.

As third generation languages are becoming increasingly less
able to meet the diverse needs of computer users, several prin-
ciples of software design are gaining great popularity, espe-
cially within the UNIX community:

Data should be kept in flat ASCII files, not binary, so that we
can always see what we are doing, and do not have to depend
upon some special program to decode our data for us.

Programming should be done in fourth generation languages,
except when the expected heavy use and/or resource consump-
tion of the program justify the expense of a more efficient cod-
ing in a third generation language.

Programs should be small and should pass data on to other pro-
grams. Software prisons, or large programs with self-
contained environments, must be avoided because they require
learning and they make extracting data difficult.

We should build software and systems to meet interface stan-
dards so that we can share software and stop dreaming that any
individual or company can do it all from scratch.

Approaching software engineering with principles like these
does have some drawbacks. The major drawback is that fourth
generation languages almost always produce slower code then
third generation languages do. As computers increase in speed
and power this drawback becomes less and less of a considera-
tion. As improved compiler optimization techniques spread,
the difference between code produced by 3GLs and 4GLs will
become smaller.

1.5 A Paradigm

A programming paradigm is important for ensuring a
robust language which has a consistent style to its syntax and
semantics. Paradigms for fourth generation languages must
meet requirements more stringent then those for third genera-
tion languages. To start with, a fourth generation language
should provide a consistent interface to high-level facilities
working with a variety of complex data types, while simultane-
ously providing fundamental low-level language constructs for
coding any functionality missing from the predefined facilities.
Too many 4GL’s are good only for projects within a narrow
application area. It’s difficult to allow for high-level con-
structs from a variety of fields without the programmer having
to specify the level of detail required in a 3GL.

The paradigm we choose for fourth generation languages is the
operator/stream paradigm. In this model, data flows in uni-
directional ‘streams’ on which operators are placed. Each
operator transforms the data as it passes by. The set of streams
in a program form a directed graph, possibly with cycles. This
paradigm concentrates on what needs to be done to the data,
and deemphasizes the techniques used in the transformation.

Fourth generation languages which attempt to use only the pro-
cedural paradigm of mainstream third generation languages
usually end up being limited to a specific application domain.
The procedural model doesn’t describe data in an abstract
enough way. Different types of operations require too much
detailed code to work with, and the languages don’t have the
simple relation between all data and operators the way an
operator/stream paradigm does.

A side benefit of using the operator/stream paradigm comes up
in the design of graphical programming tools. Traditional
third generation languages haven’t been well adapted to a
graphical programming interface. The problem stems, in part,
from the difficulty of expressing the numerous possibilities in
an intuitive pictorial way. With operator/stream as the basis
for a language, a graphical programming aid can easily convey
the process of placing an operator on a stream.

The operator/stream paradigm has proven effective in more
domains than just language design. Some UNIX kernels make
use of the paradigm to reduce the complexity of the operating
system code. Rather than having one large, complex piece of
code handling all the functionality of a particular aspect of the
operating system (such as a device driver), data in the kernel is
run through a linked set of operators, each operator performing

The UNIX Shell As a Fourth Generation Language Page 4

one small, well-defined function. This allows users to modify
the system by introducing new operators, without having to
understand the innards of other operators on the stream.

2. The Shell

The shell and the set of UNIX utilities form a fourth gen-
eration language (4GL) based on the operator/stream para-
digm. The critical feature of the shell which puts it in the class
of 4GL’s is the UNIX pipe, which allows a shell to start a
sequence of processes, each reading its input from its prede-
cessor process, and writing its output to a successor process.
The UNIX pipe is one of the major reasons leading to the
adoption of UNIX as the standard multi-user operating system.
Unfortunately, few people fully understand the philosophy
behind it; most software developers are still producing large,
self-contained applications using data formats incompatible
with anything else.

For the shell, the UNIX pipe provides the data streams, and the
hundreds of standard UNIX utilities provide the core set of
operators. The power of this approach is tremendous. Since
the data streams are flat ASCII, all the operators can read each
other’s data. UNIX includes a few standard utilities which are
capable of most data formatting needed to transform one
program’s output to the form required by another. In addition,
using stand-alone programs as operators allows easy use of
custom or commercial packages of operators, such as statistics
or database packages. This modularity encourages code reuse,
and the flat ASCII stream format makes it easy to get operators
from a variety of sources talking to each other. Finally, since
the operators can only transform the data stream running
through them, side effects can’t surprise the software engineer
by giving unexpected results.

The UNIX filesystem also provides a hierarchal storage
medium for data. Since UNIX files are flat ASCII data files,
and UNIX makes a deliberate attempt to make all data sources
look the same, most utilities can’t distinguish between data
coming from a stream and data coming from a file. This gives
great flexibility, allowing the shell to store the results of a
pipeline into a file, and then feed that data back into a stream at
some future point.

There are two frequent criticisms of fourth generation
languages. It is often noted that 4GL’s tend to be suited for a
particular application area, and that their low-level facilities
are not up to the task of providing complex functions which
don’t already exist in the high-level library. The shell escapes
this problem; UNIX utilities can be written in any language,
from shell scripts to assembly language. If a tool is needed
which isn’t currently available, the developer is free to pick the
language most suited to solving the problem, whether it’s a
CASE tool or standard C. This ability to combine the shell
with products of all other existing development tools results in
a uniquely general 4GL.

Many also complain that fourth generation languages sacrifice
too much efficiency for the sake of short source code and
high-speed development. The ability to use operators from
any source is an answer to this complaint as well. It allows a
shell programmer to code speed-critical routines in a language
more suited to efficiency considerations. If an application
requires floating point number crunching, one codes the
appropriate routines in Fortran, and the non time-critical sec-
tions of the code can still be done in the high level shell code.

With the shell, development is quite easy for even the novice
programmer. The interpreted environment allows easy access
to the internals of the script as it runs, as well as a fast test-
change-test cycle. The flat ASCII data format and lack of
operator side-effects make it easy to examine the effect dif-
ferent operators have on the stream of data.

The shell relies heavily on its operators. For example, it has
essentially no expression evaluation capability. Instead, it uses
the ‘test’ utility to provide expressions.

The ‘string’ data type is the only one the shell supports. The
shell assumes that there are operators which will do any more
advanced data type a programmer might need. Operators exist
to perform numerical functions. For multi-field records, opera-
tors commonly use the space or tab character as a field separa-
tor and the newline character as a record terminator. This
allows great flexibility, despite the overhead incurred of con-
verting data into and out of ASCII for non-string operations.

One of the greatest strengths of the shell is the ability to pro-
cess an entire file with a single command. The shell does
allow for defining procedures, as well as execution control
constructs like if, while, and case. However, these flow con-
trol constructs are often not needed. In the example presented
in the following section, no looping is done explicitly by the
shell script, because the operators implicitly loop, acting on
each line of the program.

2.1 Compatibility with DOS

DOS shares key underlying features with UNIX, enough
so that the operator/stream paradigm can be utilized identically
in both environments. Except for minor limitations on file
name syntax, the DOS hierarchically structured file system
appears to the user to be functionally identical to the UNIX file
system. The multi-tasking capabilities of UNIX, while missing
from DOS, are not essential elements of the paradigm. While
DOS shells use intermediate temporary files to implement
pipes, the interface presented to users, even using
COMMAND.COM, can be described with the operator/stream
terminology we use here. The UNIX shell and awk are avail-
able as DOS shell replacements and enhancements, notably in
the MKS Toolkit for DOS.

With this foundation in mind, let’s examine a 4gl that uses the
shell as its development environment: /rdb.

The UNIX Shell As a Fourth Generation Language Page 5

2.2 How /rdb Defines a Relational Database

A relational database is a collection of relations or tables
that may be related on one or more common columns. Rela-
tional data bases implemented like this are easily transportable
from one environment to another.

Relational databases have a solid mathematical base in rela-
tional set theory, relational algebra, and relational calculus.
There are theorems in this relational math that prove that any
data put into a relational database can be extracted. The
mathematical base also assures that manipulations performed
will have correct results, just as arithmetic assures us that the
math functions we perform on the computer have correct
results.

2.3 What is a Relation?

A /rdb relation, or table, is an ordinary ASCII file. But
some rules must be followed to use an ordinary file as a data-
base table. A /rdb table has rows, or records, separated by
newlines. It has fields, or columns, separated by a tab charac-
ter. Every row must have the same number of columns. The
first row of a table contains the names of the columns; the
second row contains columns of dashes. Any kind of informa-
tion can be represented in such a table: numbers, words, file
names, etc: /rdb commands and relational set theory doesn’t
care about the content of the table -- just as long as these rules
are followed for the form of tables. Another important rule to
remember when designing a database is: If many columns are
used in a single row to describe the same type of information,
it’s time to make a new table. For example, consider a table of
family members:

id mom dad kid1 kid2
-- ---- --- ---- ----
1 mary jack billy bobby
2 nancy joe terry susie
3 sally john adam

In this example there are two kid columns in each row. The
right way to express this relationship is with two tables: one
for parents and one for kids. They are related or linked by a
common column, id.

% cat folks
id mom dad
-- --- ---
1 mary jack
2 nancy joe
3 sally john

% cat kids
id kid
-- ---
1 billy
1 bobby
2 terry
2 susie
3 adam

2.4 How Is Information Accessed?

Tables are accessed through /rdb and shell commands
issued at the UNIX prompt or from within shell or C programs.
Here is a list of some common /rdb commands which are used
or mentioned in these examples.

Figure 4. Selected /rdb Commands
/rdb command description� ���

column, project select only certain columns
row, select select only certain rows
mean compute the mean of selected columns
jointable join two tables
sorttable sort a table
compute do calculations on columns
subtotal subtotal selected columns
total total selected columns
rename change the name of a column
justify make a table line up properly
headoff remove the first two header rows
report report writer
ve vi-like table editor

/rdb commands are programs that read tables from the stan-
dard input and write tables to the standard output. Suppose
there’s a table that looks like this:

% cat inventory
Item Amount Cost Value Description
---- ------ ---- ----- --------------
1 3 50 150 rubber gloves
2 100 5 500 test tubes
3 5 80 400 clamps
4 23 19 437 plates
5 99 24 2376 cleaning cloth
6 89 147 13083 bunsen burners
7 5 175 875 scales

Then a sample query might be:

The UNIX Shell As a Fourth Generation Language Page 6

% column Item Cost Amount < inventory
Item Cost Amount
---- ---- ------
1 50 3
2 5 100
3 80 5
4 19 23
5 24 99
6 147 89
7 175 5

This is read aloud as: ‘‘select the Item, Cost, and Amount
columns from the inventory table.’’ It’s important to voice
queries because people often type stuff in that they would
never say out loud.

% row ’Cost > 50’ < inventory
Item Amount Cost Value Description
---- ------ ---- ----- --------------
3 5 80 500 clamps
6 89 147 16353.8 bunsen burners
7 5 175 1093.75 scales

This is, ‘‘select rows where the Cost column is greater than 50
from the inventory table.’’ To put commands together:

% column Item Cost Value < inventory |
row ’Cost > 50’
Item Cost Value
---- ---- -----
3 80 400
6 147 13083
7 175 875

This is pronounced, ‘‘select the Item, Cost and Value columns
from the inventory file and select those rows where Cost is
greater than 50.’’ Inside the single quotes the < and > symbols
are pronounced less than and greater than respectively, while
outside single quotes they are pronounced from and to. The |
(pipe) symbol is pronounced and.

To take the mean of the result while listing each line:

% column Item Cost Value < inventory |
row ’Cost > 50’ | mean -l Value
Item Cost Value
---- ---- -----
3 80 400
6 147 13083
7 175 875
---- ---- -----

4786

2.5 Creating Tables and Entering Data

There are many different ways to create tables; editors,
programs, shell commands such as sed or awk, etc. Most
often, however, when /rdb tables are entered from scratch, ve,
the /rdb table editor is used. ve allows the creation of tables

quickly and in a familiar and easy way. It’s a lot like vi. The
first step in the creation of a table with ve is to create a screen
definition file with any editor. This can be accomplished with
any editor. Here is a ‘screen’ file for the states file:

% cat states-s
The States File

st < st >
state < state >

ve uses this screen file to create the table. The rules for screen
files are simple: column names go inside the angle brackets.
anything outside of angle brackets is just text that appears on
the screen.

The space between angle brackets is the viewable window
over the field, and isn’t a restriction on how wide the field can
really be. After creating a screen file like this:

% ve states

and the states file will be created. Let’s say ve has been used
to add new records to our states table so that it looks like this:

% cat states
st state
-- -----
CA California
NV Nevada
NY New York

A mailing list can be created the same way, by making a
‘screen’ file and then using ve to add a few rows:

% cat mlist-s
Yet Another Mailing List

Name <name>
Street <address>
City <city>
State <st>

% justify < mlist
name address city st
---- ------- ---- --
Evan Main St. Santa Cruz CA
Rod Broadway Ithaca NY

To ‘‘select the st and name columns from mlist and join it with
the states table.’’

% column st name < mlist |
sorttable |
jointable - states
st name
-- ----
CA Evan
NY Rod

The UNIX Shell As a Fourth Generation Language Page 7

The sorttable command was silent. But it has to be there.
Both files to be joined must be sorted. The states file is already
sorted. The dash in the jointable command means use the
standard input, just like the UNIX join command.

2.6 Reports

For numeric information, /rdb’s standard table output
adjusted with a justify or trim command is often sufficient,
especially when combined with tabletotbl and the UNIX tbl
and nroff/troff formatters. In addition to these methods, /rdb
has a report command that uses a prototype report form and
has built-in command processing capabilities.

Let’s look at a sample report form. It’s like the screen file for
ve: text is outside brackets, and column names are inside
brackets. Other commands can also go inside the brackets.
Here’s a report form for the mlist file:

% cat mlist.form
<name>
<address>
< city >, <st>

<! date +%D !>
Dear < name >,
This is a computer chain letter.
I am also sending it to:

<! column name city < mlist |
row ’name != "<name>"’ | justify !>
Bye, <! echo <name> !>.

% row ’name ˜ /Evan/’ < mlist |
report mlist.form

Evan
Main St.
Santa Cruz, CA

09/03/89
Dear Evan:
This is a computer chain letter.
I am also sending it to:
name city
---- ------
Rod Ithaca
Bye, Evan.

Arbitrary text goes outside the angle brackets; column names
go inside angle brackets, and any arbitrary command or shell
program or shell command(s) can go between exclamation
marks within angle brackets, and you can still specify columns
from the current record therein. You can even have reports
within reports ...

2.7 The Big Text Field Problem

The ‘bug report’, ‘long text column’, and ‘every word
indexed’ problems are all facets of the same situation. Let’s
say a file has some relatively short columns, and one or more

long text columns on which you’d like to use vi.

Take the case of a bug report database with associated arbi-
trarily long narrative descriptions: a solution is to keep the
descriptions in a sub-directory called, for example, bugreports,
one file per record, with the file name being bugreports/recid
where recid is the record identifier from the current record.
Then, a CTRL-key is mapped in the .verc file (analogous to the
vi’s .exrc file) to the command ‘‘vi bugreports/<recid>’’.
This grabs an identifying column from the record, constructs
the name of the associated file(s), and pops the user into vi on
the named file(s). This is quite flexible even if there is more
than one file associated with each record, switching between
ve files with a keystroke, thus effecting multiple screens: map
a CTRL-key to write the record and switch the files, and
another to switch back.

A simple report makes a two column table with record id and
word for each word in each narrative, allowing for queries like
give me all the bugs mentioning word ‘xyzzy’:

% cat wordy
#!/bin/sh
(echo "word id"
echo "---- --"
for i in [0-9]*
do

word < $i | awk ’{print $1,"’$i’"}’
done) |
sorttable -u

Now records having a particular word can be found easily. If
speed is a consideration, build an(other) inverted index on the
word/id concordance list just created:

% cd bugreports
% wordy > bugwords
% index -mi -x bugwords word
% echo xyzzy | search -mi -x bugwords word

This produces a list of record id numbers on the standard out-
put. Once you have the record id numbers, one more search is
necessary to find the original record in the ‘bugs’ table. Of
course, with the record id numbers, NO search is necessary to
find the narrative, because the file name IS the record id.

2.8 Non-Text Data Structures

Suppose a field is a picture, or a sound, or some other
non-textual object. The /rdb approach is to identify an object
resource, with text, within a field in a table, describing the type
and location of the object. Fields from the current record can
be referenced in the .verc file by the same <column_name>
specification used in the report program and customized ve
screen files. This allows a clear, user-defined way of tying ve
into X based or other graphical user interfaces. For example,
suppose a field contains the name of a file containing an image.
A CTRL-key can be mapped in the .verc file to generate the
appropriate commands to pop up a new window, call a picture

The UNIX Shell As a Fourth Generation Language Page 8

display program, and display the file named in the field into
that window. The image file can be in any format, and may
reside anywhere on the network. Additional functionality ties
the X-window mouse into this system, so that when the mouse
is positioned over a field and pressed, the appropriate com-
mands are executed. This approach is the UNIX-like way of
integrating all our previous UNIX experience and software
expertise into the X user interface, and it’s easy to show how it
can also be used with the existing report generation features of
/rdb.

2.9 Large Tables

Large tables are often as easily handled as small tables.
When working with very large tables some form of indexing is
desirable: hash, inverted sequential secondary, binary (sorted
relations), or some form of tree (linked list).

The shell approach is to use the UNIX directory structure as
the first (few) levels of tree index. One financial application
using /rdb involves the 80 megabyte file of World Bank time
series from the International Monetary Fund. As distributed, it
takes several large machine CPU minutes to peruse this big file
and extract a single time series. The file was divided into a
directory for each country and within each country directory, a
file for each time series, with the file name being the time
series code as given by the IMF. Each of those time series
files is a /rdb file, with columns YR ANN Q1 Q2 Q3 Q4
and so forth. A separate ‘‘description’’ file in each country
directory has a line for each file in the directory, giving CODE
DESCRIPTION UNITS.

Thus, the time to retrieve any time series (if the country and
time series code are known) is independent of the size of the
database. Queries like ‘‘which countries have this time series
in common?’’ are answered with the ls command. More than
one level of index can of course be implemented just by
adding directory hierarchies.

UNIX has many commands to traverse directory trees, and to
add, delete, and otherwise manipulate nodes. With this
approach, nodes are tables, and the plethora of UNIX directory
and file handling commands are all relational database manipu-
lation commands.

2.10 Architectural Performance Enhancements

Because of /rdb’s shell level approach, enhancements
and advantages resulting from multi-processor architectures
are immediately available. In a loosely coupled architecture
with tcp/ip protocols connecting a number of processors, the
following code fragment performs searches in parallel on a
number of processors:

#!/bin/sh
cat head
(for i in a b c ...
do

rsh $i "cat keys |
search portion.$i |
headoff" &

done) | continue ...

It is is the work already done by the implementors of the shell
that collects individual rows from the parallel search processes
spun off on each of the processors and arbitrates the output so
that only one row at a time is presented to the "continue" pro-
cess at the end of the parenthesized command. Of course, there
is some overhead involved in splitting the data themselves into
the portions to be made available for each parallel search, so
this technique is appropriate when the speed advantages gained
by parallelism overcomes the overhead necessary to split the
files.

ON massively parallel SIMD and vector machines such as FPS
systems, IBM 3090 vector processors, and MasPar MP plat-
forms, the straightforward method of taking advantage of the
architecture to is implement matrix capabilities at the shell
level. Matrices are tables, and enclosing the already optimized
subroutines in shell callable programs is not problematic.

There is also renewed interest in medium granularity. For
example, Cogent Research provides a transputer based LINDA
system, automatically distributing multiple processors over the
available computing power. The most general MIMD
approach is the most difficult to implement at the shell level,
and database capabilities that take full advantage of the Hyper-
Cube approach, for example, will take more time to fully
implement.

2.11 An Example From Trade Literature

UNIX/World magazine printed two articles about fourth
generation programming languages (July 1986 and April
1987), and invited several competing companies to produce a
sample report using their 4GL systems. Their languages
seemed more like COBOL or RPG than a real 4GL. If they
represent the standard by which to measure which generation a
language is, the shell fits easily into the fourth generation
category.

To demonstrate the capabilities of the shell, here are two
scripts for producing the sample report called for in the
UNIX/World article. These shell scripts use the standard
UNIX utilities extended only by the /rdb relational database
management tools. The first example below produces the data
required by the UNIX/World test, but leaves it in a default for-
mat. The second report uses the formatting commands neces-
sary to conform exactly to the articles’ example.

The UNIX Shell As a Fourth Generation Language Page 9

% pay
number fname lname code hours rate total
------ ------- -------- ---- ----- ---- -----

1 Evan Schaffer 2 3 75 225
1 Evan Schaffer 2 4 75 300

------ ------- -------- ---- ----- ---- -----
1 7 525

2 Mike Wolf 1 4 85 340
2 Mike Wolf 2 5 85 425

------ ------- -------- ---- ----- ---- -----
2 9 765

3 Barbara Wright 2 5 75 375
3 Barbara Wright 1 6 75 450

------ ------- -------- ---- ----- ---- -----
3 11 825

2115

Here’s the shell script that produces this report. Note it only
takes only 9 lines of simple, readable code. There’s no count-
ing columns or characters. There’s no "line-at-a-time" pro-
cessing, as with the other so-called 4GLs. The shell really
shows its power here. Note that although the commands in the
shell script appear to consist almost entirely of /rdb com-
mands, /rdb makes use of UNIX utilities to do its work. Most
of the /rdb commands are shell scripts or C programs which
make extensive use of the UNIX utilities. The ‘compute’ pro-
gram, for example, is merely (?) a front end to ‘awk’.

% cat pay
jointable hours employee |
sorttable code |
jointable -j1 code -j2 number - task |
sorttable number |
project number fname lname code hours rate total |
compute ’total = hours * rate’ |
justify > tmp
subtotal -l number hours total < tmp
total total < tmp | justify | tail -1

Not shown in the UNIX/World articles are the data tables
themselves. The main reason for that is that each of the other
4GLs demonstrated has a special binary format for their files
that was not easy to print and that is accessible only through
their interface. When programming with the shell, the data is
in ASCII files. That means the data are accessible by humans,
by UNIX, or by any program you choose to write. Here are
the files mentioned in the script:

% cat hours
number hours code
------ ----- ----

1 3 2
1 4 2
2 4 1
2 5 2
3 5 2
3 6 1

% cat employee
number fname lname rate
------ ----- ----- ----

1 Evan Schaffer 75
2 Mike Wolf 85
3 Barbara Wright 75

% cat task
number name
------ ----

1 unix/world
2 Lawrence Livermore

The shell program that produces the exact format required,
appended as Exhibit 2, is still only 28 lines. A C program to
perform the same task would take pages of code. The July
1986 UNIX/World contained example code from nine 4GL’s
solving the problem. Note that only one language took fewer
lines of code to solve the problem, and the Progress solution
doesn’t become shorter when allowed to use another report
format, as /rdb’s does.

Language Lines of Code���

Progress 20
Rubix 32
Empress/32 34
Unify DBMS 34
filePro 16 Plus 42
Informix-4GL 48
SHAR->IX 48
C/Base 64
Plain English 84

Learning to use the UNIX utilities has a much greater value
than learning yet another special programming language.
Once a small critical mass of UNIX familiarity is achieved,
application development becomes little more than writing sim-
ple yet powerful scripts to perform tasks which used to be
laboriously performed by hand, or just not done at all.

All these techniques comprise a marriage of the facilities that
come with the UNIX system itself, and relational capabilities
provided by /rdb.

This attitude of not reinventing the wheel is the basis of the
shell and /rdb approach. All UNIX knowledge is knowledge
about databases, and experiences with databases teach more
about UNIX. That’s why the combination of the /rdb exten-
sions to UNIX and the shell command language is a 4GL most
appropriate to the UNIX environment.

3. SQL

SQL is another language for querying a database. It’s used
as the foundation for many contemporary 4GL’s. It does not
use the stream/operator paradigm, but "nests" queries to pass
data from one operator to another. When SQL was developed,
UNIX was non-existent, so an entire environment had to be
developed to express queries. SQL is another system to learn,

The UNIX Shell As a Fourth Generation Language Page 10

with little use outside of itself, and typically no relation to the
operating environment surrounding it.

SQL does not specify any particular file format. While there is
an ANSI standard SQL for expressing queries, implementors
are free to store data however they want. In a way, this is a
contradiction, because getting away from these walls that stand
between data is very important, and was the principal reason
that the concept of a database came about. The idea goes under
the name of integrated and modeless software, and most
recently, interoperability.

There are reasons why SQL based systems are popular, even
desirable. SQL based systems are widely available and there is
a large body of expertise also readily available. Many U.S.
government agencies require access to corporate databases via
SQL, especially in the defense industry. SQL is valuable in
non-UNIX environments. Partly because SQL is difficult for
novices to understand and use, SQL providers typically field a
large, helpful support organization. Of course, this drives the
price up, and doesn’t adequately address the needs that
prompted the development of these tools in the first place:
making non-experts proficient and productive in the construc-
tion of basic database applications.

SQL queries can be easily converted to shell scripts by the
sql2rdb filter available with /rdb. Appended as Exhibit 1 is a
sample conversion table.

4. Fifth Generation Systems

There is a distinction to be made between fourth generation
languages and CASE tools. The programmer of a fourth gen-
eration system must still specify the fundamental algorithms
for completing a task, perhaps at a higher level of abstraction,
especially of data types. CASE tools, on the other hand,
require only a specification of the task, and generate not only
the code, but also the algorithm. CASE tools tend to be of
very limited domain. An example would be a screen layout
tool. The developer draws the positions of the windows
wanted, and the tool generates the code to create the windows,
manage the text and graphics inside them, and deal with icons
and menus.

Some graphical CASE tools (X-rdb, X-Builder and NeXT
STEP) are examples of what we might call 5GL’s. Using a
graphical user interface, these tools allow applications to be
built by example. Some force the user to specify actions algo-
rithmically, and some do not. There’s even less agreement
about what constitutes a 5GL than there is about 4GL’s.

5. Discussion

The shell appears to be quite a powerful tool indeed. It is
not without limitations, however. First, only a few companies
are currently producing tools oriented towards use in shell
scripts. /rdb remedies the shell’s weakness of not being able
to store complex data types, and there are many additional
tools for for correcting some of the other major limitations,

such as numerical computation, statistical analysis, and busi-
ness graphics output. Although UNIX has applications dedi-
cated to mathematics and numerical analysis, most are them-
selves large self-contained programs. A programmer needing
matrix inversions, for example must adapt existing tools, like
System S or SAS, to work within shell scripts, or write a spe-
cial purpose tool.

The shell needs improvement in the ability to connect multiple
pipes together more freely. The original designers didn’t anti-
cipate the need for more than linear pipelines. While more
complex, non-linear pipes can be created by the use of tem-
porary files, this method is only barely adequate for construct-
ing complex structures such as cyclic streams. Finally, more
operators are needed which allow incoming data to be split
between or duplicated on multiple output pipes.

The shell shares another problem with weakly typed
languages: errors in the format of that data stream can lead to
unexpected output. Since there is no method of type or format
checking, the programmer must write code which avoids the
problem. The interpreted environment does allow careful
examination of the stream data as it passes through each opera-
tor, which reduces the difficulty of writing error free code. The
shell won’t lend itself to the sort of correctness proofs offered
by the newer CASE tools unless a formal definition is prof-
fered, specifying not only syntax but all the operators as well.

Now that the operator/stream paradigm is being recognized as
an extremely powerful model for language design, we expect
to see several new tools based upon the principle in the next
year. More tools for graphical program design should also
start to appear, now that rdb has adopted the X window stan-
dard and has provided a tool for designing shell pipelines
graphically. As more such graphical interfaces become avail-
able, less programming experience will be needed to create
shell scripts, drastically increasing productivity.

6. Conclusion

The operator/stream paradigm has produced a simple,
powerful, general purpose tool. It allows one to prototype or
generate a proof of concept in hours or days, when it might
have required weeks with C. Although the shell produces
slower code than a third generation language, the increasing
power of modern computers makes this a minor concern for
many tasks. This framework provides an easily visualizable
way of manipulating large (or small) amounts of structured
data.

While there is currently a shortage of utilities designed for
general purpose use within shell scripts, awareness of the
potential of shell programming is spreading, and more pack-
ages are being written outside of the traditional monolithic pro-
gram tradition. In this way, computing is coming full circle,
returning to the original concepts of Von Neumann, whose
computing paradigm embodies the stream of sequential
memory passing by the operator of the central processing unit.

The UNIX Shell As a Fourth Generation Language Page 11

Exhibit 1. SQL Conversion Table� ���
SQL UNIX and /rdb� ���
select col1 col2 from filename column col1 col2 < filename
where column - expression row ’column == expression’
compute column = expression compute ’column = expression’
group by subtotal
having row
order by column sorttable column
unique uniq
count wc -l
outer join jointable -a1
update delete, replace
nesting pipes� ���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Exhibit 2. Exact Format Shell Program

Here is the modified shell program that produces the exact article format:

% cat payexact
echo "Employee Charge"
jointable hours employee |
sorttable code |
jointable -j1 code -j2 number - task |
sorttable number |
project number hours code fname lname rate name total |
compute ’total = hours * rate; name = sprintf("%s %s",fname,lname)’ |
project number name code hours rate total > tmp
compute ’if (name == prev) name = "";\

prev = name;\
hours = sprintf("%4.2f",hours);\
rate = sprintf("%6.2f",rate);\
total = sprintf("%7.2f",total)’ < tmp |

subtotal -l number hours total |
compute ’if (code ˜ / / && code !˜ /-/) code = "* Employee Total";\

if (code ˜ / / && code !˜ /-/) number = ""’ > tmp1
rename name "Employee Name" < tmp1 |
justify -r number hours rate total -l "Employee Name" -c code |
sed ’/---/d

s/ˆ/ /
s/rate/ rate/
s/total/ total/’

TOTAL=‘project total < tmp |
total |
compute ’total = sprintf("%10.2f",total)’|
headoff‘
echo " \
** Report Total $TOTAL"

7. References

1. B. Kernighan and R. Pike, The UNIX Programming
Environment, Prentice Hall, Englewood Cliffs, NJ, 1985.

2. S. Kochan and P. Wood, UNIX Shell Programming,
Hayden Book Company, 1985.

3. S. Prata, Advanced UNIX - A Programmers Guide,
Howard W. Sams and Co., Inc., 1985.

4. A. Winston, "4GL Faceoff: A look at Fourth-Generation
Languages," UNIX/World, July 1986, pp. 34-41.

5. S. Misra and P. Jalics, "Third-Generation versus
Fourth-Generation Software Development," IEEE
Software, July 1988, pp. 8-14.

6. R. Manis, E. Schaffer and R. Jorgensen, UNIX Rela-
tional Database Management, Prentice Hall, Englewood
Cliffs, NJ, 1988.

7. J. Verner and G. Tate, "Estimating Size and Effort in
Fourth-Generation Development," IEEE Software, July
1988, pp 15-22.

8. V. Matos and P Jalics, "An Experimental Analysis Of
The Performance Of Fourth Generation Tools On PCs,"
Communications of the ACM, November 1989, pp.
1340-1351.

9. R. Manis, M. Meyer, UNIX Shell Programming, Howard
Sams, 1987

